Stability of block LDL factorization of a symmetric tridiagonal matrix
نویسنده
چکیده
For symmetric inde®nite tridiagonal matrices, block LDL factorization without interchanges is shown to have excellent numerical stability when a pivoting strategy of Bunch is used to choose the dimension (1 or 2) of the pivots. Ó 1999 Elsevier Science Inc. All rights reserved. AMS classi®cation: 65F05; 65G05
منابع مشابه
Stability of Block LDLT Factorization of a Symmetric Tridiagonal Matrix
For symmetric indeenite tridiagonal matrices, block LDL T factorization without interchanges is shown to have excellent numerical stability when a pivoting strategy of Bunch is used to choose the dimension (1 or 2) of the pivots.
متن کاملStable Factorizations of Symmetric Tridiagonal and Triadic Matrices
We call a matrix triadic if it has no more than two nonzero off-diagonal elements in any column. A symmetric tridiagonal matrix is a special case. In this paper we consider LXLT factorizations of symmetric triadic matrices, where L is unit lower triangular and X is diagonal, block diagonal with 1×1 and 2×2 blocks, or the identity with L lower triangular. We prove that with diagonal pivoting, th...
متن کاملAnalysis of Block LDL Factorizations for Symmetric Indefinite Matrices∗
We consider the block LDL factorizations for symmetric indefinite matrices in the form LBL , where L is unit lower triangular and B is block diagonal with each diagonal block having dimension 1 or 2. The stability of this factorization and its application to solving linear systems has been well-studied in the literature. In this paper we give a condition under which the LBL factorization will r...
متن کاملParallel Numerical Algorithms for Symmetric Positive Definite Linear Systems
We give a matrix factorization for the solution of the linear system Ax = f , when coefficient matrix A is a dense symmetric positive definite matrix. We call this factorization as "WW T factorization". The algorithm for this factorization is given. Existence and backward error analysis of the method are given. The WDWT factorization is also presented. When the coefficient matrix is a symmetric...
متن کاملCommunication-Avoiding Symmetric-Indefinite Factorization
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen’s triangular tridiagonalization. It factors a dense symmetric matrix A as the product A = PLTLP where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997